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One dimensional classical spin models with long 
range anisotropic interaction 

An extreme nematogenic lattice model 

by S. ROMANO 
Department of Physics, ‘A. Volta’, The University and unita 

‘G.N.S.M.-C.N.R./C.I.S.M.-M.P.I.’ via A. Bassi 6, 1-27100 Pavia, Italy 

(Received 19 November 1990; accepted 2 February 1991) 

We consider a classical system, consisting of n-component unit vectors (classical 
spins, n = 2,3), asssociated with a one dimensional lattice { UklkEZ}, and interacting 
via a translationally invariant pair potential of the long range, ferromagnetic, and 
anisotropic form 

where E > O  is a positive quantity setting energy and temperature scales (i.e. 
T* = kT/e), a>O. b>O, p >  1 and uk,l denotes the Cartesian components of the unit 
vector uk. Available rigorous results entail the existence of an ordering transition at 
afinite temperaturefor 1 <p<2,andfor the borderlinecasesp=2, b=O(thusa= 11, 
studied here by Monte Carlo simulation. Moreover, the case n=2 can be 
interpreted both as a ferromagnet and as an extreme case of a nematogenic lattice 
model, and was investigated accordingly, also by calculating the singlet orien- 
tational distribution function at one temperature in the ordered region. Simulation 
results showed a broad, qualitative similarity between the two models. The 
estimated transition temperatures are T,* = 1.04 + 0.02 (n = 2) and T,* =0*735 

0.015 (n = 3); we conjecture them to be of second order, although a Thouless effect 
(as in the Ising counterpart) cannot be completely ruled out. The molecular field 
approximation overestimates the transition temperature by about 50 per cent. 

1. Introduction 
Over the past 20 years, the study of spin systems associated with a low dimensional 

lattice and interacting via long range potentials has attracted a significant amount of 
theoretical work, and the present paper continues along this line. It uses rigorous 
results implying the existence of an ordering transition and simulation to characterize 
the physical properties. We consider a classical system, consisting of n-component unit 
vectors (classical spins, n = 2,3), associated with a one dimensional lattice ( u k l k d } ,  and 
interacting via a translationally invariant pair potential of the long range, ferromagne- 
tic, and, in general, anisotropic form 

where e > O  is a positive quantity setting the energy and temperature scales (i.e. 
T* = kT/e), a >O, b 20, p >  1 and u , , ~  denote the Cartesian components of the unit 
vector uk (i.e. uk, is the x component, etc.); the larger of the two numbers a and b can be 
taken as unity. The condition p >  1 is needed in order to avoid a ground state with an 
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74 S. Romano 

infinite energy per spin. When a = b, the interaction is isotropic, i.e. it only depends on 
the mutual orientation. 

A number of theoretical results are now known concerning the existence or absence 
of a finite temperature transition to a ferromagnetically ordered phase C1-41. It has 
been proved that the system disorders at all finite temperatures when p > 2, and that the 
ordering transition exists when 1 < p < 2 C2-41; the border line case p = 2 has also been 
extensively studied. 

1.1. lsing model (n=I) 
The ordering transition also exists for p = 2 [S, 61, and the critical exponents have 

been proved to be mean field-like for 1 < p  < 3/2 as well as for more general single spin 
distributions [&8]. Estimates of the transition temperatures are reported in the 
literature, with an uncertainty of the order of one per cent 

T,*(n = 1, p = 3/2) = 4.33 [9,10], 
T:(n= l ,p=2)= 152 [ l l ,  121. 

1.2. Continuous spins (n = 2,3) 
Let their orientations in an arbitrary reference frame be defined by the usual angles 

( ( P k )  or ($k ,  (Pk) ;  when n = 2, the interaction potential can be rewritten in a slightly more 
general way by 

vm= q ' k , m  = -&lj-kl  -"[a cos (m(Pj) cos (mcpk) 

+ b sin (mrpj) sin (rncpt)], (2) 
where m is an arbitrary positive integer. We can check that, for any given values of p ,  a 
and b, the partition function is independent of m, and structural quantities (e.g. 
orientational correlation functions) can be defined in a way independent of m, and 
actually calculated using any convenient value of it. The choice m= 1 defines a 
ferromagnetic model, whereas m=2 provides a rather extreme lattice model of a 
nematic liquid crystal. In the isotropic case a = b, an ordering transition exists for 
1 < p < 2  [2,4], and available correlation inequalities [13-161 show that this also 
happens for n = 3, a = 0. 

When p 2 2, the system disorders at all finite temperatures [17-191; when p = 2, it 
may possess a transition to a low temperature phase with infinite susceptibility [20]. If 
this is true, then correlation inequalities [13-161 show that it also holds for the case 
n = 3, a = 0, which is anisotropic in spin space but continuously degenerate with respect 
to the angle cp. When p = 2, the same rigorous inequalities [ 13-16] imply the existence 
of an ordering transition for n = 2, a > b 2 0 and for n = 3, b = 0. 

About the interplay between anisotropy and dimensionality, we point out that, in 
two dimensions, the nearest neighbour counterparts of present anisotropic models can 
produce an ordering transition at finite temperature, whereas a long range behaviour of 
the potential is needed for the isotropic models, i.e. 2 < p < 4  [1,4]. Some estimates of 
the transition temperatures for isotropic continuous spin models are reported in the 
literature, with an uncertainty of the order of 1 per cent: 

TE(n=2,p=3/2,a=b)=2-16 [21], 

T$(n=3,p=3/2,a=b)= 1.48 [22]. 
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An extreme nematogenic lattice model 75 

The transition properties of the isotropic models have also been investigated by 
other techniques [23,24], including renormalization group (for example [25-27]), high 
temperature series expansion [ 1 11, simulation (for example [ 12,21,22]), and spherical 
model treatment, which predicts the existence of an ordering transition for 1 < p < 2 

Apart from the rigorous results mentioned here, very little is known about the 
anisotropic models, whose properties we now try to elucidate by simulation. This, in 
turn, requires a more precise definition of the potential model, and so we chose 
p = 2, n = 2 or 3 and b = 0, both for computational simplicity and in order to obtain a 
more pronounced effect (the temperature of the disordering transition can be expected 
to decrease to zero as b tends to a). The potential models which we have actually 
simulated are thus 

C281. 

and 
Y’k= - 61 j -  k l -2  cos (qj)  cos (qk), n = 2 

F’k= -&I j -  k l - 2  cos (gj)cos (gk), n = 3. 
(3) 

(4) 

The common reference direction for defining the angles (Pk or &, respectively, can be 
identified with the lattice axis. For n = 2, we have carried out most calculations using 
the ferromagnetic interpretation (see equation (2)). 

The ground state energy, in both cases [29], is 

Concerning the extreme character of the nematogenic model defined by n = 2, we recall 
that there has been some debate about nematic-like orientational order in one or two 
dimensional systems [30,31]. In some cases its absence has been proved rigorously, 
[ 1,321, whereas we can rely here on its proved existence, although at the cost of severe 
mathematical constraints on the form of the potential. 

2. Computational aspects 
Calculations were carried out using periodic boundary conditions, and the energy 

of a configuration was summed in closed form by means of the identity [33] 

Two sample sizes, N = 1000 and N = 2000 were used; calculations were performed in 
cascade, i.e. the equilibrated configuration obtained at one temperature was used to 
start both the production run at the same temperature and the equilibration run at the 
next higher temperature. The starting configuration for simulation with the larger 
sample was obtained by doubling an equilibrated configuration of the smaller one. 
Equilibration runs took between 2000 and 5000 cycles (where one cycle corresponds to 
N attempted moves), and production runs took between 5000 and 10000 cycles; 
subaverages for evaluating the statistical errors were calculated over macrosteps 
consisting of 250 cycles. 

Calculated quantities include the potential energy, the configurational heat 
capacity (evaluated both as a fluctuation quantity and by least-square fitting and 
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76 S .  Romano 

numerical differentiation of the potential energy), and various structural ones; the 
magnetic moment per particle and its mean square value are given by 

M = (l/N)(F), &I =( l/N)(J(F * F)), M 2  =( l/N)'(F * F) (7) 
N 

F =  C u k .  
k =  1 

Taking into account that 

the specific form of the potential entails that only one component of M (hereafter called 
MI) is different from zero; in the ordered region, MI coincides with &I to within the 
statistical errors, and becomes much smaller (roughly speaking, less than one half in 
magnitude) in the disordered region. The orientational correlation functions are 
defined by 

= (pL(uj ' uk)>, n = 3  

as functions of r = l j  - k(;  (10) I = (cos (Lm(qj-qk)))m, n= 2 

Gdr) 

where P, are Legendre polynomials, and ( . . . ) denotes an average with respect to the 
potential V,. Because of the symmetry of the potential, they reduce to 

Calculations were carried out at a few temperatures, for L= 1,2. 
As we have pointed out before, when n = 2, the choice m = 2 defines a nematogenic 

(lattice) model, whose order parameters T2 and T4 can be defined and calculated as 
discussed in detail elsewhere [34-361, i.e. via the second rank ordering tensor 

QJ., =2(u~uJ2 - b ~ p  (12) 
and its fourth rank counterpart. Moreover, the underlying symmetry of the potential 
requires that 

( U A U J 2  = S , , ( u 3 2 ,  (~J.u,uvup)2 = ~ A , ~ v p ( u 3 u 3 2 ,  (13) 

i.e. the ordering tensors are diagonal, the director coincides with the lattice x axis, and 
the relevant nematic order parameters reduce to the m-independent quantities 

These, in turn, can be calculated using the ferromagnetic interpretation (m= 1 as in 
equation (2)), so that T2 is just MI; this was also checked and verified numerically by 
carrying out an independent simulation at T* = 1, now using the nematic interpret- 
ation (m= 2 as in equation (2)), i.e. the potential 

V2= Y'k,2' -&Ij--l-'COS(2qj)cos(2qk), n=2. (15) 

This additional simulation was also used to calculate the singlet orientational 
distribution function, over a chain consisting of 10000 cycles, and analysing a 
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An extreme nematogenic lattice model 77 

configuration every second cycle, according to the procedure reported elsewhere 
[34,37]. In the present case, this distribution function is an even function of cos @, 
where @ is the angle made by the individual molecule with the director, and can be 
formally expanded as [37] 

where the coefficients a2k are even rank order parameters: taking into account the 
underlying symmetry, $ can be restricted between 0 and x / 2 .  We recall that the usual 
procedure for calculating the order parameters and the distribution function [34-371 
needs to compensate for director fluctuations. In the present case, the very anisotropy 
of the interaction keeps the director pinned in the ordered phase, so that the angle @ in 
equation (16) can be identified with the angle cp defining the particle orientations in the 
lattice frame. Director pinning is also known in other simulation studies (for example 
[38,39]), carried out with anisotropic potential models. 

3. Results 
The results for the potential energy (figures 1 and 2) were not affected by the increase 

in the sample size, to within statistical errors of the order of 0.25 per cent; they suggest a 
continuous change across the transition. 

The configurational specific heat is plotted in figures 3 and 4; results for the 
fluctuation quantities obtained with the two sample sizes agree to within statistical 
errors of the order of 10 per cent, and show a peak, and possibly a singularity, at the 
transition. Order parameter results are plotted in figures 5 and 6, and exhibit a 
pronounced sample size effect above the transition temperature; the significant amount 
of finite size order is also reflected by the slow decay of the correlation functions (not 
shown here). We estimate the transition temperatures for the two models to be 

T$(n = 2, p = 2, b = 0) = 1 *04 f 0.02, 

and 

T$(n = 3, p=2, b =0) =0.735 f 0.015. 

As for the singlet orientational distribution function (see figure 7), the coefficients 
a2k in equation (16) were directly calculated from a 201 bin histogram [37], which was 
smoothed by regrouping its bins and reducing their number to 41. As a double-check, 
the order parameters were recalculated from the smoothed histogram via a linear least 
square fit. We obtained a very good fit by truncating the expansion at k = 6, and found a 
variance of 0.000059 and the following values 

a2 = 0.603 & 0.004, 

a6 = 0.1 14 f 0-003, 

al, =0*009 f 0.003, 

a4 = 0.343 f 0.004, 

a, =0*039 f 0403, 

aI2  =0*002 f 0.004. 

Truncation at k = 4 gave a variance of 0.00019, and the same values for the coefficients 
a2-a,; the coefficients a, and a4 agree with the values of and T4, obtained as averages 
over the whole Monte Carlo chain, i.e. 0.597 f 0.008 and 0.342 +0.003. 
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Figure 1. Results for the potential energy, n = 2 .  
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Figure 2. Results for the potential energy, n = 3. 
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Figure 4. Configurational heat capacity, n = 3: (a) (circles), fluctuation quantities, N = 1000, (b) 
(squares), fluctuation quantities, N = 2000, (c) (triangles), results obtained by a least square 
fit and numerical differentiation of the potential energy. The fluctuation quantities are 
affected by statistical errors of the order of 10 per cent. 
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Figure 5. Order parameters, n=2:  (a) (circles), n, N =  1000; (b) (squares), a, N=2000; 
(c) (triangles), T4; the two sample sizes give the same results to within the associated 
statistical errors. 
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Figure 6. Order parameters, n = 3: (a) (circles), M, N = 1o00, (b) (squares), A??, N = 2000. 
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Figure 7. Plot of the singlet orientational distribution function at the T* of 1, for n=2; 
(a) (circles): simulation results; (b) (dashed line): least-square fit obtained from equation 
(17), by truncating the series at k=2.  

4. Comparisons 
The Ising counterpart of the present model exhibits a Thouless effect, i.e. a 

transition where the magnetization drops discontinuously to zero, whereas the energy 
and possibly the specific heat change continuously [S,  8,12,27]. The simulation results 
suggest that the specific heat reaches its maximum at a somewhat higher temperature 
[12]. We conjecture that the transitions are second order, although a Thouless effect 
cannot be completely ruled out. The disordering transition is known to be weakly first 
order in real nematics and for various realistic short range nematogenic potential 
models studied in three dimensions, where the order parameter at the transition ranges 
is typically between 0.3 and 0.5 (for example [36,3941]). 

A simple molecular field approximation C42-441 can be developed, which predicts 
in both cases second order transitions at the temperatures 

TE(n = 2, p = 2, b = 0) = I Uzl=  1.645 

and 

Tz(n = 3, p = 2, b = 0) = (2/3)1 U,*l= 1.096. 

The ratios between the transition temperature estimated by simulation and the 
molecular field result are 0.63 (n =2) and 067  (n= 3), respectively, and show that the 
theory performs slightly better for n = 3. The transition temperature is here over- 
estimated by 50 per cent, in contrast to the reasonable success of the same approach for 
nearest neighbour nematogenic models in three dimensions [36,38,39,40,45]. The 
molecular field approach works reasonably well also for some isotropic long range 
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82 S. Romano 

models of low dimensionality (d  = 1,2), where it overestimates the transition tempera- 
ture by 20 per cent at worst [21,22,46,47] and its estimates for the critical exponents 
are confirmed by renormalization group results [25,26]. The molecular field treatment 
of nematic models predicts for S(q) an expression of the form [40,41] 

S(cp)=exp bo+ c b, ,cos(2kd 7 (17) [ k > O  1 
where the coefficients bZk are also predicted to depend on the order parameters; for the 
present model this means bzk = 0, k > 1. Truncation of the series in equation (17) at k = 2 
gave a variance of 04015, and a reasonable overall agreement (see figure 7); inclusion of 
higher order terms up to k = 4 reduced the variance to 0.00052 and gave a good overall 
agreement. The plots obtained by truncating the two series in equations (16) and (17) at 
k = 4 were found to coincide with the original results, to the resolution of the figure. This 
contrasts with other simulated short range nematic potential models in three 
dimensions, and with experimental data on real ones [48-501, where a good fit was 
obtained by truncating the series in equation (21) at k =  1. 

The molecular field treatment can be refined by using various cluster-variational 
techniques (for example [24,5 1-53]), whereby interactions within a finite cluster are 
treated exactly, and those with the rest of the system are accounted for in some 
molecular field way, according to different possible procedures. Such approaches were 
first developed for magnetic systems [53], and later applied to nematics (for example 
[54,55]). For example, a two site cluster treatment [53-551 can be developed for n = 2, 
and predicts a transition with finite discontinuities for energy, heat capacity and order 
parameters, taking place at TZ = 1.093; the discrepancy is thus reduced to less than 10 
per cent. 

The present calculations were carried out on, among other machines, a VAX 8350 
computer, belonging to the Sezione di Pavia of the Istituto Nazionale di Fisica 
Nucleare (INFN); computer time on a CRAY machine was allocated by the Italian 
Consiglio Nazionale delle Ricerche (CNR). The author wishes to thank Professor G. R. 
Luckhurst (Department of Chemistry, University of Southampton) for helpful 
discussion and suggestions. 
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